
OVERLAY GRID BASED GEOMETRY CLEANUP

Jiangtao Hu, Y. K. Lee, Ted Blacker and Jin Zhu

FLUENT INC, 500 Davis St., Suite 600, Evanston, Illinois 60201

ABSTRACT

A newly developed system for defining watertight volume geometry on imported foreign CAD models is described. This system
is based on an overlay grid mesher that is being developed in the GAMBIT preprocessing code. It is being explored as an
alternative way of cleaning dirty geometries. This overlay meshing based geometry cleanup enables an automatic volume
reconstruction from inconsistent B-Rep surface geometries. These inconsistencies include common edges defined twice, small
gaps, holes and overlapping of faces. This new approach holds the promise of higher automation levels, speed and robustness
when compared to more traditional interactive cleanup methodologies.

Keywords: geometry cleanup, dirty geometry, faceted models, overlay mesh

1. INTRODUCTION

Within one CAD system, it is generally easy for designers
or analysts to create "clean” geometry with well-connected
faces and watertight volumes. However, analysts often use
different software tools to develop a finite element mesh
for analysis.

Unfortunately all CAD systems are unique in their handling
of model tolerance, topology connectivity and geometry
smoothing. Thus interoperability between different CAD
and preprocessing programs is always a big obstacle to
designers and analysts. This problem is particularly acute
for analysts who find it advantageous to explore
combinatorial uses of different vendors’ systems. The result
of exporting and importing geometry using standard
protocols such as STEP, IGES, native CAD formats and
faceted representations is often a disconnected model with
gaps or overlapping between surfaces. Hence importing a
model with watertight volumes is difficult to achieve in
practice.

This problem is compounded by the fact that most volume
meshing algorithms rely on a watertight volume. Thus
different geometry healing or cleanup tools have been
developed [1-4].

Figure 1 An example of dirty geometry imported
from IGES.

One approach to cleanup is to use direct geometry changing
tools. However, these are computationally expensive,
complex and often produce undesirable side effects or
unacceptable models. GAMBIT has augmented these
healing tools with virtual tools to connect/disconnect or

merge/divide edges and faces; then stitches them into
watertight volumes. This method of topology adjustment
independent of geometry changes (i.e. virtual topology) is
becoming more common in commercial software. A certain
level of automation can be achieved using virtual topology
operators and a user specified tolerance. This tolerance can
be based on the tolerance of the original CAD system, a
percentage of the shortest edge length, etc. However, such
automation usually falls short for more complicated
geometries. The cleaning of the remaining disconnected
geometry, as well as other refeature/defeature operations,
usually requires manual intervention.

This paper explores a novel method that has the potential to
provide a more automated tool for geometry cleanup. The
input to the algorithm is the set of disconnected faces. The
system automatically replaces the disconnected faces with
newly constructed faces to create a watertight volume.

This cleanup relies on the overlay-meshing algorithm.
Overlay meshing [5], of which the more traditional
Cartesian meshing [6] is a subset, is also newly developed
in GAMBIT. It has a significant advantage in that it does
not require volumes to perform the meshing process.
Instead, it only uses faces as input. This enables it to
provide a continuous domain with hex cells based on a set
of surfaces. This paper details our method of leveraging
this technology to produce a set of connected faces,
resulting in a watertight volume when successful. Although
this paper represents a preliminary investigation only,
results are very promising.

2. OVERVIEW OF CURRENT GEOMETRY
SYSTEM

We are using GAMBIT as the framework for this
technology and as such rely heavily on its geometry
system. Therefore it's necessary to briefly introduce the
basics of this system. GAMBIT provides a mixed pallet of
geometrical representations including real (standard B-Rep),
faceted, direct CAD and virtual as described below:

• Real. GAMBIT employs a solid modeling kernel,

ACIS, to provide basic geometric creation and
modification functionality. We term this standard B-
Rep model as "real" geometry.

• Faceted. A faceted geometry uses a set of direct facets
(triangles) to describe the shape. These facets can
originate from prior meshes or from faceted
representations typically employed for graphical
display.

• Direct CAD. The direct CAD geometry relies on an
external CAD system to supply the geometric
functionality for the entities. These representations are
then a set of appropriate pointers and associated data.

• Virtual. A virtual entity does not have a geometric
definition of its own, but is based on other entities.
GAMBIT also provides virtual topology tools, which
are used to edit the topological entities only of the
object. Usually such virtual topology editing includes

merging of adjacent entities of similar dimension,
splitting of entities into parts, construction of
individual virtual entities and connection of multiple
representations of a single entity into one [7][8].

To provide a unifying framework for these diverse types,
GAMBIT has separated the topology from the geometry of
all these types. This then enables topology operators
independent of geometry, i.e. virtual topology.

For efficiency, all four kinds of faces contain a triangular
facet representation. GAMBIT uses this faceting as a fast
approximated evaluation for graphics as well as for some
geometry/mesh operations. Such a faceting is shown in
Figure 2.

Figure 2 A Faceted representation for a general
face.

3. OVERLAY GEOMETRY CLEANUP

The proposed technique in this study is to cleanup a dirty
geometry by taking advantage of the overlay meshing tool
in GAMBIT. In this chapter, a concise summary of the
method developed will be presented and details of key
procedures and important features will be discussed.

The overlay cleanup technique can be divided into two
phases, 1) edge intersections on a structured grid, and 2)
geometry extraction from the intersected cells. These are
described below.

3.1 EDGE INTERSECTION COMPUTATIONS
IN STRUCTURED GRID

To calculate intersections, a simple structured grid is first
projected over the geometry. Cells in the grid are then
recursively refined until certain accuracy is achieved.
While refining the cells, the intersection information
between cell edges and the faceted representation of the
dirty geometry are computed and stored with the edge. The

result is a set of intersecting points on edges of the
computed overlay grid structure, as described in the
sections below.

3.1.1 STRUCTURED BACKGROUND GRID
GENERATION

(a)

(b)

Figure 3 (a) A cylinder shaped model before
overlay mesh. (b) Intersecting hexes generated
using overlay mesher.

The first step of the procedure is to overlay a structured
grid over the dirty geometry domain. This procedure starts
with a simple grid with a limited number of cells: typically

one. Then cells in the grid are recursively refined as in a
typical octree technique [9], until a desired accuracy is
achieved. During this refinement, the cells having
intersections with the dirty geometry are determined and
refinement is carried out only for such cells. Unlike a
typical octree mesher, any non-boundary cell can be
deleted. This should reduce the required memory and
computations significantly, and is being explored. Figure 3
shows a boundary grid for a simple geometry.

3.1.2 EDGE INTERSECTIONS
For speed and memory efficiency, currently the overlay-
meshing tool only provides cutting information for the cell
edges. Providing cutting information for cell faces, though
not impossible, will significantly slow the performance of
this algorithm. Thus the cleanup tool must deduce how the
edge intersecting points would result in face cuts for each
cell face. To assist in creation of correct face and cell cuts,
we store the intersecting facet and the associated geometric
face with each intersection edge.

3.1.3 CELL SIZE CONTROL
As briefly mentioned before, a simple grid is progressively
refined into a final grid of uniform-sized cells. Basically,
the finer the mesh, the more accurately the geometry will
be reconstructed. The price is more memory and
computation time. See Figure 4 (a) and (b) for a
comparison of mesh size differences. Numerical
experiments have shown that cell size control plays a
crucial role in the following way.

• Cell size dictates accuracy:

Cell size plays a very important role, in that it not only
determines the accuracy of the final geometry, but also
affects whether the cleanup will be successful or not.

This is because the overlay cleanup technology uses a
linear interpolation to decide the cutting plane within each
hex. Larger size meshes will lose geometry details more
easily. If too many details are lost, it is impossible to
recreate the volume.

Since automated geometry cleanup is our goal, we have
initially not utilized size functions [10] in that the process
may become too complex for the user.

• Memory and speed performance:

The number of final crossing cells dominates the
performance of the procedure. As a finer mesh is used,
more memory usage and more computations for edge
intersections are required.

(a)

(b)

Figure 4 (a) Intersecting hexes generated using
overlay mesher, mesh size = 1. (b) Intersecting
hexes generated using overlay mesher, mesh size
= 0.5

• Over refinement costs:

Over-refinement also affects the robustness of the cleanup
procedure. In general, a finer mesh gives more accurate
results than a coarser mesh does. However, in some cases,
excessively small cells may cause a failure in the cleanup
procedure. Typical examples are cases when there are
several layers of cells falling in the gap of the dirty
geometry or several layers of cells covering the overlap
region. In such cases, the expected intersections in those
cells are either totally lost or become too complex for our
initial heuristic algorithms, as will be described later.

Ultimately this will cause a failure in the geometry
reconstruction. Figure 5 schematically demonstrates the
effect of over refinement on the robustness of the
developed technique. In the first two figures, the current
algorithm is able to match the two ends of the gap detected
by taking advantage of neighbor information of the cells
containing the gap ends. However, when there are one or
more layers of cells between the gap ends, such as in the
third figure, it is hard to match corresponding gap ends
correctly. As a result, the current algorithm fails to
reconstruct a volume when there are such cases due to the
excessive refinement. It seems that the minimum meshing
size should at least be larger than the largest gap size and
larger than the largest overlap size of the model. Such a
size would guarantee that no hex cell would sit in between
the edges without any intersecting points (gap case), and
guarantee that at most two layers of hex cells will cover the
gap or the overlap. At present, our heuristics are not
adequate to handle models with extensive overlapping
areas.

Edge 1

Edge 2

Element 1

Edge 1

Edge 2

Edge 1

Edge 2

E1 E2

E3 E4

Elements 1-16

Edge 1

Edge 2

Edge 1

Edge 2

Element 1

Edge 1

Edge 2

Edge 1

Edge 2

Edge 1

Edge 2

E1 E2

E3 E4

Elements 1-16

Figure 5 Over refinement cost for a gap case

3.2 GEOMETRY RECONSTRUCTION
During geometry reconstruction, the intersecting points are
connected into facets. These facets are then organized into
new vertices, edges, faces, and finally into a volume. These
techniques are described below.

Following the creation of the overlay hex mesh, we get a
list of intersecting cells along with intersecting points on
each cell edge. Theoretically, a hex edge or a hex face can
have any number of intersecting points. But, with a good
meshing size, typically, a cell edge will have 0, 1 or 2
intersecting points. Likewise, a cell face will have 0, 1, 2, 3
or 4 intersecting points. If the geometry were clean
(surfaces are connected), a cell face should never have only
one intersecting point. However, if the cell edge is almost
parallel to the intersecting facet, numerical difficulties
prevent us from getting an accurate intersecting point. With

additional complexity of dirty geometries, we will have cell
faces that have only one intersecting point.

With the completion of the meshing phase, the original
geometry (faces) is discarded. A totally new set of faces is
then created from the edge intersections (intersection points
and facets) stored on the hex mesh. Thus, in the
descriptions below, "edges" and "faces" shall refer to the
new edges and faces being created rather than referring to
the old faces of the original geometry.

3.2.1 Split cell faces

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)
Figure 6 Different intersecting points’ pattern on
one cell face, and how the edges get connected.

The first step in the reconstruction process is to transform
the edge intersections into face intersections, or edges that
split the cell face. Creation of the face splits naturally
depends on the number of cell edge intersecting points. For
example, if a cell face has only two intersection points, then
one can directly connect them into a splitting edge (6a).
However, if a cell face has more than two intersection
points, then ambiguities arise. Figure 6 shows a number of
connection possibilities. This ambiguity can often be
resolved based on the information stored with each
intersection. For example, 6c shows a single intersection on
each edge. If only 2 of the intersections were generated
from facets directly connected to each other, then it is
natural that these should be connected. Of course the more
complicated connections require extensive heuristics.
Empirically, we have found the most common cases to be
1) two intersecting points on one cell face (6a) and 2) one
face having four intersecting points and two of them on the
same edge (6b). Figure 6 shows details of various edge
creation methods.

One special case, shown in Figure 6f, is when the original
faces are intersecting each other. If the intersection is
confined to one cell (see Figure 7 (a)), the small
overlapping area will be automatically removed. When the
overlap goes through two layers of cells (see Figure 7 (b)),
there will be more than two intersecting points on one cell
face (Face O). To handle this case, the code checks through
the neighboring cell faces (Face A, B, C and D). The
objective is to find where the facet connectivity stops. In
this case, they are Face A and B. Once the terminating ends

are found, they are retracted back to the crossing face. In
this example intersection, points a and b are removed. This
leaves the remaining points, c and d, to be connected
appropriately.

Dotted lines are the original facets’ orientations;
Solid line is the final edge created.
Dotted lines are the original facets’ orientations;
Solid line is the final edge created.

(a)

Face O

Face A

Face B

Face C

Face D

Point a

Point b

Point c

Point d

Point e

Point f

Dotted lines are the original facets’ connectivity;
Solid line is the final edge created.

Face O

Face A

Face B

Face C

Face D

Point a

Point b

Point c

Point d

Point e

Point f

Dotted lines are the original facets’ connectivity;
Solid line is the final edge created.

(b)

Figure 7 (a) One cell covers the intersecting
facets. (b) Details on how to create edge on
overlap case if two layers of cells cover the
overlap.

3.2.2 Single intersection face reduction

Point A

Point B

Point C

d

c

a

b

Point A

Point B

Point C

d

c

a

b

Figure 8 (a) A cell has intersection points A and B
after mesh, find point C by satisfying b

a = d
c .

Point A

Point B

Point C

Point A

Point B

Point C

Figure 8 (b) Using the same method to determine
Point C from neighboring cells’ intersecting
points A and B.

After all cell faces have been examined and connected with
appropriate edges, we collect all cells that have faces
owning only one intersecting point. Then we check if any
such cell has two neighboring single intersection faces. If
any are found, we create a new intersecting point on the
shared edge by interpolating with respect to the other two
points (see Figure 8 (a)). Finally, for those cells not having
neighboring faces, we compare neighboring faces on
neighboring cells. If they happen to be connectible, as

shown in Figure 8(b), we create a new intersection on their
shared edge. At the end of this procedure, single
intersection faces may still exist and these remain for later
processing.

3.2.3 Facet hex cuts
The next step in the process is to use the splitting edges of
the faces to create splitting facets of the cells. From the
edges, we can find either one or two closed patches in each
hex. We then facet each patch for better data processing by
creating a center node and connecting the center node to all
edges. Figure 9 illustrates how the cutting facets are
generated. Note that some loops will not close as shown in
Figure 9d. For these loops, we calculate a center point and
generate facets with the edges of the open loop.

(a) No center point for
closed 3-sided loop

(b) Closed single loop

(c) Closed double loop (d) Open single loop

(a) No center point for
closed 3-sided loop

(b) Closed single loop

(c) Closed double loop (d) Open single loop
Figure 9 Creation of patches within each hex.

3.2.4 Creation of faceted geometric faces
These newly generated cell facets can be combined to form
a geometric face. These are passed into our geometry
converting tools just as if they were imported meshes. This
converting tool will create faceted geometric faces based on
either feature angles or facet groups that are initially passed
in. We attempted to designate groups for the converting
tool based on which original face it was closest to. We
calculated the proximity by comparing the distance from
the facet's center to the face. However, this tended to create
zigzag shaped boundaries as shown in Figure 10 (a).
Neighboring triangular facets tended to oscillate between
different faces because the center points vary slightly in
location. Also, geometry import often splits of a larger
surface into an inappropriate set of smaller ones. Merging
these back together is impossible using closest face
approach. One advantage of the closest face method is that
it tended to roughly maintain the existing geometric faces.
Notice the edges bounding the bumping circular area in

Figure 10 (a). Although the boundaries are jagged, there are
still 2 faces as in the original input geometry. In
consideration of problems mentioned above, we finally
decided to use a feature angle for the converting. This
allows the conversion to create faces as smooth as it will.
However, this is also problematic in that we will lose the
original face boundaries. This then may cause problems for
the analyst when adding boundary conditions on faces.
Since GAMBIT provides mechanisms to correct the
conversion interactively, this solution was deemed
adequate.

Figure 10 (b) shows the result of using a feature angle
based conversion method. Notice the face boundaries are
much smoother even though the circular faces have been
merged away. The smaller rectangular faces occur as part
of hole filling as described below.

(a)

(b)

Figure 10 Constructed geometry (a) by facet
groupings based on proximity to original
geometric faces (b) reconstructed with a feature
angle (30 degree)

3.2.5 Filling holes
In order to create a watertight volume, each face edge
should share two faces. As described above, there are cases
where the edge intersecting points (Point L in Figure 11)
are missing or left dangling. This leads to the open loops
described earlier. These open loops then will form missing
patches in the cell splitting when combined with neighbor
cells. Figure 11 is an example of one edge missing an
intersecting point and the resulting missing patch. Thus a
hole in the faceted faces is formed. When there are more
missing points in one hex as well as in neighboring hexes,
the holes can grow larger with an irregular folded shape as
the original geometry dictates. The code will collect all the
connected edges that bound a hole, group them into loops,
and try to create virtual faces on each of the loops. Here,
points A, B, C, D, E, F, G, and H are intersecting points,
point L is the missing intersecting point, and points I, G
and K are points the code created when faceting the cutting
plane in each hexes. The shaded area is the previously
created facets’ face, while the area bounded by points A, D,
G, F, K, C and I is the void space on which the code will
attempt to create a virtual face.

A

B

C

D

E

F

G
H

I
G

K

L

A

B

C

D

E

F

G
H

I
G

K

L

Figure 11 Filling the hole represented by points A,
D, G, F, K, C, I, A with a virtual face.

3.2.6 Stitch volume
If all above procedures are successful, we get a set of new
geometric faces that are connected to each other. There will
be no holes and no overlaps in between. They then form a
watertight volume using a standard volume stitch operator.

3.2.7 Connected faces instead of a volume
For cases where the input is not a closed domain, e.g. just
two disconnected faces, procedures 1-4 still can be used.
However, if the geometry does not represent a volume in
some gross way, then one would expect disconnected
edges. This translates to “holes” that should not be filled.
Thus, when filling holes in procedure 5, we check the loop
to see if it covers a void space. The check is accomplished

by using a bounding box. We check if all newly generated
facets’ points are within the bounding box. If so, the loop
doesn't define a void space. As a result, no virtual faces will
be generated and no volume will be created. A warning
message to alert the user to this fact is provided.

4. EXAMPLES

(a)

(b)

Figure 12 Mechanical pin (a) Volume created
using mesh size = 2. (b) Desired volume in
GAMBIT

Empirically we found that by using a proper meshing size,
most of the dirty geometries can be converted into volumes,
Figure 12 (a) shows a volume created for a column shaped
geometry, and Figure 12 (b) shows the desired volume.
Notice that some edges have been rounded and small
virtual faces introduced to fill holes. Also, the edges have a
limited zigzag effect due mainly to the overlay mesh
position relative to the geometry. Figure 13 (a) shows the
volume created for a mixer and Figure 13 (b) is the desired
mixer in GAMBIT. In this example, there are numerous
virtual faces created to cover holes in the faceted
representation. Although both examples create watertight
volumes, there are a lot of small virtual faces that would
need to be merged to simplify the geometry.

(a)

(b)

Figure 13 Mixer example (a) Volume created using
mesh size = 4, overall dimension ≈ 150. (b)
Desired volume in GAMBIT.

Figure 14 is an example where the current code fails to
create a volume out of the dirty geometry, but we can see
even in this case, the faces are created and connected to
each other. This geometry has a lot of folded structures in
the hair part so there are many cell edges intersecting the
geometry more than once. The current implementation
cannot handle such complex cases. As a result, many edges
were missed and many virtual faces were employed to fill
the void spaces. In this particular example, some loops are
too degenerate to be handled in GAMBIT. Thus a final
volume was not generated.

(a)

(b)

Figure 14 Jack example (a) Geometry created
using mesh size = 0.5. Overall dimension ≈ 30.
Notice that there are very detailed geometries
around the hair; it failed to create volume because
some of the loops failed to create virtual faces. (b)
Desired volume in GAMBIT.

5. DISCUSSIONS AND FUTURE WORK

This paper explores a geometry cleanup technique by using
an overlay meshing tool. The whole procedure includes two
phases: intersection computation with a structured grid and
geometry reconstruction. By using some reasoning
techniques, it is possible to recreate vertices, edges and
faces, finally stitching them into volumes.

While this work is only in the preliminary phase, it shows
promise as an alternative to more manual cleanup methods.
Advances are required to resolve the weaknesses
discovered as follows:

• A feature-based refinement is needed on the generated

overlay grid. This would eliminate the dependence on
mesh size and further reduce user input. It would also
decrease the complexity of holes to be filled.

• A method of extracting crisper edges is being
explored. Since the edge intersections record the facet
of the original geometry, it is thought that we can
employ the facet normal information. Figure 15 shows
how these normals could be used to improve the
splitting edges of the cell faces, causing a similar
improvement in the splitting facets. This is being
explored.

• A reduction in the number of virtual faces is needed.
We believe this will occur as our heuristics for adding
missing intersections matures.

• It may be profitable to employ existing facets where
available instead of reconstructing all of the facets.
Then the method could focus on only those areas
where gaps and overlaps exist.

Ñb

Ña

Ñb

Ña

Dotted line is the current edge; Solid lines
are original facets.

Dotted lines are proposed new splitting
edges; Solid lines are original facets.

Ñb

Ña

Ñb

Ña

Dotted line is the current edge; Solid lines
are original facets.

Dotted lines are proposed new splitting
edges; Solid lines are original facets.

Figure 15 Proposed improvements in cell face
splits

REFERENCES

[1] G. Butlin and C. Stops, “CAD Data Repair,”
Proceeding 5th International Meshing Roundtable,
SAND96-2301, pp7-12, 1996.

[2] NAFEMS, How to – Integrate CAD and
Analysis, CAD/FE Integration Working Group,

NAFEMS Finite Element Methods & Standards,
1996.

[3] T. J. Tautges, “Automatic Detail Reduction For
Mesh Generation Applications,” Proceeding 10th
International Meshing Roundtable, pp. 407-418,
2001.

[4] S. J. Owen and D.R. White, “Mesh-Based
Geometry: A Systematic Approach to
Constructing Geometry From A Finite Element
Mesh”, Proceeding 10th International Meshing
Roundtable, pp.83-96, 2001

[5] Y. K. Lee, J. Zhu and T. Blacker, “A three-
dimensional Cartesian grid mesh generation for
staircase meshes,” Internal report, Fluent Inc.,
2002.

[6] H. Samet, “The Design and Analysis of Spatial

Data Structures. Addison-Wesley Series on
Computer Science and Information Processing.”
Addison-Wesley Publishing Company, 1990.

[7] T. Blacker, A. Sheffer, J. Clements and M.
Bercovier, “Using virtual topology to simplify
the mesh generation process”. ASME, Applied
Mechanics Division. P45-50, 1997.

[8] A. Sheffer, T. D. Blacker and M. Bercovier,
“Clustering: Automated Detail Suppression
Using Virtual Topology,” Joint
ASME/ASCE/SES Summer Meeting. June 1997.

[9] M. A. Yerry and M. S. Shephard, “Automatic
three-dimensional mesh generation by the
modified-octree technique,” IJNME, 20, pp.
1965-1990, 1984.

[10] GAMBIT 2.0 User’s Manual, Fluent Inc. (2002)

	ABSTRACT
	INTRODUCTION
	2. OVERVIEW OF CURRENT GEOMETRY SYSTEM
	3. OVERLAY GEOMETRY CLEANUP
	3.1 EDGE INTERSECTION COMPUTATIONS IN STRUCTURED GRID
	3.1.1 STRUCTURED BACKGROUND GRID GENERATION
	3.1.2 EDGE INTERSECTIONS
	3.1.3 CELL SIZE CONTROL

	3.2 GEOMETRY RECONSTRUCTION
	3.2.1 Split cell faces
	3.2.2 Single intersection face reduction
	3.2.3 Facet hex cuts
	3.2.4 Creation of faceted geometric faces
	3.2.5 Filling holes
	3.2.6 Stitch volume
	3.2.7 Connected faces instead of a volume

	4. EXAMPLES
	5. DISCUSSIONS AND FUTURE WORK
	REFERENCES

